AC TIVE POTENTIOMEIER

The potentiometer introduced by Panasonic a little while ago is of a quality exceeded only by the likes of the Penny \& Giles potentiometer (which cost in excess of £ 100). The Panasonic devices have multilayer tracks made from conductive plastics and carbon, which are linked to the terminals by silver electrodes. The five-fold wiper is also made of silver and guarantees high accuracy (tracking within 0.8 dB) and smooth operation. In other words, this is an attractive, reasonably priced, high-quality volume control.

The potentiometer is a standard device which is preceded by an input amplifier and followed by an output buffer. It can be inserted into a line connection, so that appliances that have no volume control can be expanded to complete control amplifiers.

With the component values specified in the diagram, each op amp amplifies $\times 2.24$
to give a total amplification per channel of $\times 5$.T his is sufficient to raise the line level of 200 mV to the standard output amplifier input level of 1 V . It is possible to alter the amplification to some extent, but it is advisable to carry any changes only to the buffer stages (IC_{2} and IC_{4}). For example, the amplification of $I C_{2}$ is $1+R_{6} / R_{5}$. In most applications, this will do fine. With an input signal of 2 V (for instance, from a CD player), there is still a headroom of 6 dB .

If there is a need to add a selector switch at the input, R_{1} and R_{8} may be omitted. Bear in mind, however, that it must be possible for a bias current to flow.

The PCB allows the use of the Panasonic potentiometers and models from Alps, motor-driven as well as manually operated types. The board provides complete electrical isolation of the two channels. M oreover, signal earth and the negative supply line

have been kept as far apart as feasible: they are linked only at the buffer capacitors. These arrangements prevent any effect of decoupling currents on the signal quality.

M oreover, r.f. decoupling capacitors and chokes $\left(\mathrm{L}_{1}-\mathrm{L}_{4}\right)$ in the supply lines prevent any spurious products entering the signal processing circuits.

The circuit is highly suitable for being combined with the IR volume control published earlier*.

Parts list

Resistors:

$\mathrm{R}_{1}, \mathrm{R}_{8}=47 \mathrm{k} \Omega$
$R_{2}, R_{5}, R_{9}, R_{12}=1.00 \mathrm{k} \Omega, 1 \%$
$R_{3}, R_{6}, R_{10}, R_{13}=1.24 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{4}, \mathrm{R}_{11}=1 \mathrm{M} \Omega$
$\mathrm{R}_{7}, \mathrm{R}_{14}=100 \Omega$
$\mathrm{P}_{1}=10 \mathrm{k} \Omega$ logarithmic stereo (motordriven) potentiometer

Capacitors:

$\mathrm{C}_{1}-\mathrm{C}_{6}, \mathrm{C}_{9}-\mathrm{C}_{14}=100 \mathrm{nF}$
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{15}, \mathrm{C}_{16}=1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial

Inductors:
$\mathrm{L}_{1}-\mathrm{L}_{4}=47 \mu \mathrm{H}$
Integrated circuits:
IC ${ }_{1}-I C_{4}=$ OPA 627AP
M iscellaneous:
PCB order no. 954009 (see p. 70)

* J uly/August 1994

Design by T. Giesberts
[954099]

